Copied to
clipboard

G = C62.73D4order 288 = 25·32

57th non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.73D4, (C3xD4):15D6, (C3xQ8):17D6, C3:5(D4:D6), (C2xC12).161D6, (C3xC12).154D4, C32:7D8:10C2, C32:25(C8:C22), C32:11SD16:10C2, C12.58D6:15C2, C12.119(C3:D4), C12.103(C22xS3), (C6xC12).153C22, (C3xC12).107C23, C32:4C8:13C22, (D4xC32):17C22, C4.24(C32:7D4), (Q8xC32):16C22, C12:S3.31C22, C22.5(C32:7D4), D4:4(C2xC3:S3), Q8:5(C2xC3:S3), (C3xC4oD4):5S3, C4oD4:3(C3:S3), (C3xC6).293(C2xD4), (C32xC4oD4):3C2, C6.134(C2xC3:D4), (C2xC12:S3):16C2, C4.17(C22xC3:S3), (C2xC6).26(C3:D4), C2.23(C2xC32:7D4), (C2xC4).21(C2xC3:S3), SmallGroup(288,806)

Series: Derived Chief Lower central Upper central

C1C3xC12 — C62.73D4
C1C3C32C3xC6C3xC12C12:S3C2xC12:S3 — C62.73D4
C32C3xC6C3xC12 — C62.73D4
C1C2C2xC4C4oD4

Generators and relations for C62.73D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a-1b3, dad=a-1, cbc-1=dbd=b-1, dcd=b3c3 >

Subgroups: 908 in 204 conjugacy classes, 65 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C32, C12, C12, D6, C2xC6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C3:S3, C3xC6, C3xC6, C3:C8, D12, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C8:C22, C3xC12, C3xC12, C2xC3:S3, C62, C62, C4.Dic3, D4:S3, Q8:2S3, C2xD12, C3xC4oD4, C32:4C8, C12:S3, C12:S3, C6xC12, C6xC12, D4xC32, D4xC32, Q8xC32, C22xC3:S3, D4:D6, C12.58D6, C32:7D8, C32:11SD16, C2xC12:S3, C32xC4oD4, C62.73D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:S3, C3:D4, C22xS3, C8:C22, C2xC3:S3, C2xC3:D4, C32:7D4, C22xC3:S3, D4:D6, C2xC32:7D4, C62.73D4

Smallest permutation representation of C62.73D4
On 72 points
Generators in S72
(1 25 15 5 29 11)(2 16 30)(3 27 9 7 31 13)(4 10 32)(6 12 26)(8 14 28)(17 64 50)(18 55 57 22 51 61)(19 58 52)(20 49 59 24 53 63)(21 60 54)(23 62 56)(33 48 69)(34 66 41 38 70 45)(35 42 71)(36 68 43 40 72 47)(37 44 65)(39 46 67)
(1 45 20 5 41 24)(2 17 42 6 21 46)(3 47 22 7 43 18)(4 19 44 8 23 48)(9 68 61 13 72 57)(10 58 65 14 62 69)(11 70 63 15 66 59)(12 60 67 16 64 71)(25 34 49 29 38 53)(26 54 39 30 50 35)(27 36 51 31 40 55)(28 56 33 32 52 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(9 27)(10 26)(11 25)(12 32)(13 31)(14 30)(15 29)(16 28)(17 44)(18 43)(19 42)(20 41)(21 48)(22 47)(23 46)(24 45)(33 60)(34 59)(35 58)(36 57)(37 64)(38 63)(39 62)(40 61)(49 66)(50 65)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)

G:=sub<Sym(72)| (1,25,15,5,29,11)(2,16,30)(3,27,9,7,31,13)(4,10,32)(6,12,26)(8,14,28)(17,64,50)(18,55,57,22,51,61)(19,58,52)(20,49,59,24,53,63)(21,60,54)(23,62,56)(33,48,69)(34,66,41,38,70,45)(35,42,71)(36,68,43,40,72,47)(37,44,65)(39,46,67), (1,45,20,5,41,24)(2,17,42,6,21,46)(3,47,22,7,43,18)(4,19,44,8,23,48)(9,68,61,13,72,57)(10,58,65,14,62,69)(11,70,63,15,66,59)(12,60,67,16,64,71)(25,34,49,29,38,53)(26,54,39,30,50,35)(27,36,51,31,40,55)(28,56,33,32,52,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,27)(10,26)(11,25)(12,32)(13,31)(14,30)(15,29)(16,28)(17,44)(18,43)(19,42)(20,41)(21,48)(22,47)(23,46)(24,45)(33,60)(34,59)(35,58)(36,57)(37,64)(38,63)(39,62)(40,61)(49,66)(50,65)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)>;

G:=Group( (1,25,15,5,29,11)(2,16,30)(3,27,9,7,31,13)(4,10,32)(6,12,26)(8,14,28)(17,64,50)(18,55,57,22,51,61)(19,58,52)(20,49,59,24,53,63)(21,60,54)(23,62,56)(33,48,69)(34,66,41,38,70,45)(35,42,71)(36,68,43,40,72,47)(37,44,65)(39,46,67), (1,45,20,5,41,24)(2,17,42,6,21,46)(3,47,22,7,43,18)(4,19,44,8,23,48)(9,68,61,13,72,57)(10,58,65,14,62,69)(11,70,63,15,66,59)(12,60,67,16,64,71)(25,34,49,29,38,53)(26,54,39,30,50,35)(27,36,51,31,40,55)(28,56,33,32,52,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,27)(10,26)(11,25)(12,32)(13,31)(14,30)(15,29)(16,28)(17,44)(18,43)(19,42)(20,41)(21,48)(22,47)(23,46)(24,45)(33,60)(34,59)(35,58)(36,57)(37,64)(38,63)(39,62)(40,61)(49,66)(50,65)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67) );

G=PermutationGroup([[(1,25,15,5,29,11),(2,16,30),(3,27,9,7,31,13),(4,10,32),(6,12,26),(8,14,28),(17,64,50),(18,55,57,22,51,61),(19,58,52),(20,49,59,24,53,63),(21,60,54),(23,62,56),(33,48,69),(34,66,41,38,70,45),(35,42,71),(36,68,43,40,72,47),(37,44,65),(39,46,67)], [(1,45,20,5,41,24),(2,17,42,6,21,46),(3,47,22,7,43,18),(4,19,44,8,23,48),(9,68,61,13,72,57),(10,58,65,14,62,69),(11,70,63,15,66,59),(12,60,67,16,64,71),(25,34,49,29,38,53),(26,54,39,30,50,35),(27,36,51,31,40,55),(28,56,33,32,52,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(9,27),(10,26),(11,25),(12,32),(13,31),(14,30),(15,29),(16,28),(17,44),(18,43),(19,42),(20,41),(21,48),(22,47),(23,46),(24,45),(33,60),(34,59),(35,58),(36,57),(37,64),(38,63),(39,62),(40,61),(49,66),(50,65),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67)]])

51 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C6A6B6C6D6E···6P8A8B12A···12H12I···12T
order122222333344466666···68812···1212···12
size11243636222222422224···436362···24···4

51 irreducible representations

dim1111112222222244
type++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D6C3:D4C3:D4C8:C22D4:D6
kernelC62.73D4C12.58D6C32:7D8C32:11SD16C2xC12:S3C32xC4oD4C3xC4oD4C3xC12C62C2xC12C3xD4C3xQ8C12C2xC6C32C3
# reps1122114114448818

Matrix representation of C62.73D4 in GL6(F73)

110000
7200000
0072000
0007200
00125710
00281201
,
72720000
100000
001100
0072000
000001
0000721
,
100000
72720000
006239590
005011014
0064721139
007285062
,
7200000
110000
00727200
000100
0012286666
002816597

G:=sub<GL(6,GF(73))| [1,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,12,28,0,0,0,72,57,12,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,1,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,62,50,64,72,0,0,39,11,72,8,0,0,59,0,11,50,0,0,0,14,39,62],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,72,0,12,28,0,0,72,1,28,16,0,0,0,0,66,59,0,0,0,0,66,7] >;

C62.73D4 in GAP, Magma, Sage, TeX

C_6^2._{73}D_4
% in TeX

G:=Group("C6^2.73D4");
// GroupNames label

G:=SmallGroup(288,806);
// by ID

G=gap.SmallGroup(288,806);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,219,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^-1*b^3,d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=b^3*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<